Лекция №16
Непосредственная численная оценка альтернатив является распространенным приемом в практике получения экспертной информации. Эксперту предъявляется набор альтернатив . Если цель экспертизы- оценка их сравнительной предпочтительности, то эксперт ставит в соответствие каждой альтернативе число , характеризующее ее предпочтительность. Зная численную оценку каждой альтернативы, можно получить сравнительную оценку предпочтительности для каждой пары альтернатив, т.е. можно определить, на сколько условных единиц или во сколько раз одна альтернатива превосходит другую. Если цель экспертизы- разбиение альтернатив на класс, то для каждой пары альтернатив эксперт указывает численную оценку их сходства.
Отметим, что для численных оценок предпочтительности каждая пара альтернатив сравнима и не возникает случаев нетранзитивности: если численная оценка альтернативы выше численной оценки альтернативы , а численная оценка альтернативы выше численной оценки альтернативы , то очевидно, что численная оценка альтернативы выше численной оценки альтернативы , т.к. .
1. Метод непосредственной оценки состоит в том, что диапазон изменения какой-либо качественной переменной разбивается на несколько интервалов, каждому из которых присваивается определенная оценка (балл), например от 0 до 10. Шкала оценок м.б. не только положительной, а, например, включать в себя диапазон с интервалом оценок от –3 до +3. Задача эксперта заключается в помещении каждого из рассматриваемых объектов (факторов) в определенный оценочный интервал в соответствии с предположением эксперта об их значимости.
В некоторых случаях оказывается удобнее для выбора наиболее предпочтительного фактора (альтернативы, объекта) сначала произвести оценку, а затем их ранжировать. Пусть например, m экспертов оценили (по шкале от 0 до100) к направлений исследований с точки зрения важности их для достижения определенной цели.
Направление исследований a b c d e f g h k
Оценки 40 30 80 90 20 100 60 70 50
Ранг 7 8 3 2 9 1 5 4 6
Для того чтобы проранжировать эти оценки, приписываем каждому из направлений исследований число натурального ряда, таким образом, чтобы ранг 1 был приписан максимальной оценки, а ранг k- минимальной.
- Лекции по системному анализу Павленко а.И.
- Часть I. Основы методологии системного анализа
- 1.1. Системный анализ
- 1.2. Системный анализ и другие междисциплинарные научные подходы
- 1.3. Виды системного анализа
- 1.4. Методология
- Определение системы
- 1.6. Элементы
- 1.7. Взаимосвязи и отношения
- 1.8. Окружающая среда
- 1.9. Свойства систем
- 1. Закономерности взаимодействия части и целого
- 2. Закономерности развития
- 3. Закономерности иерархической упорядоченности
- 4. Закономерности вариативного существования
- 1.10. Субъект и объект
- Система как объект исследования
- Роли субъекта в системном анализе
- 1.11. Классификация систем
- 2. Структуры и функции
- 2.1. Понятие структуры
- 2.2. Понятие иерархии
- 2.3. Функции
- 3.Проблемы и решения
- 3.1. Понятие проблемы
- Уяснение проблемы
- Структурирование проблемы
- 1. Уяснение проблемы
- 2. Структурирование проблемы
- 3. Определение целей
- 3.2. Понятие решение
- 4. Цель и критерии
- 4.1. О понятии цель
- 4.2. Определение целей
- 4.3. Критерии
- 4.4. Измерения и шкалы
- 5. Методология системного анализа
- 5.1. Системный анализ как процесс управления
- 5.2. Этап 1 - Уяснение проблемы
- Этап 2 – Структурирование проблемы
- 5.4. Этап 3 - Определение целей
- 5.5. Этап 4 - Разработка вариантов решения
- 5.6. Этап 5 - Анализ ограничений
- 5.7. Этап 6 - Анализ взаимовлияния целей, альтернатив и ресурсов
- 5.8. Этап 7 - Принятие решения
- 5.9. Этап 8 - Реализация решения
- Часть 2. Модели в системном анализе
- 6.1. О понятии модель
- 6. 2. Отношения
- Т.О., множество r-(X) – это множество всех элементов y м, с которыми фиксированный элемент X м находиться в отношении r.
- Рассмотрим четыре отношения специального вида:
- Операции над отношениями.
- В графе g( ) присутствуют только те дуги, которые отсутствуют в графе g(r).
- 6.3. Типы отношений
- Отношение толерантности
- Отношение порядка
- 6.4. Размытые (нечеткие) множества
- 6.5. Понятие нечеткого бинарного отношения
- 6.8. Трехместные и n-местные отношения
- Математические модели Системного анализа
- Взаимодействие со средой.
- При описании системы в виде конечного автомата: ,
- Часть III. 8. Методы экспертного оценивания альтернатив
- 8.1. Методы получения качественных оценок
- 1. Метод парных сравнении
- 2. Метод множественных сравнений (мс)
- 3. Ранжирование
- 4. Метод векторов предпочтений
- 5. Задача классификации
- 8. 2. Методы получения количественных оценок
- Лекция №16
- 9. Меры близости на отношениях
- Парадокс Эрроу.
- Лекция №17
- 2. Медиана Кемени
- VI.4 Показатели согласованности общественного мнения группы экспертов
- VI.4.1 Метод коэффициентов ассоциаций
- VI.4.2 Коэффициенты ранговой корреляции
- VI.4.3 Коэффициент конкордации (от англ. Согласованность)
- Эксперты дают одинаковые оценки разным альтернативам
- Многокритериальные задачи принятия решения Классификация многокритериальных задач
- Предпочтения лпр
- Наилучшие решения
- Если множество maxpB не является внешне устойчивым, то для утверждения о том, что выбор следует ограничить рамками этого множества, нет основания.
- У Слейтора все граничные точки включены в множество.
- Концептуальные проблемы при решении многокритериальных задач
- 7.2.3. Принципы компромисса
- Лекция № 21 Концептуальные проблемы при решении многокритериальных задач
- Методы решения мкз
- Строится для каждой точки
- Лпр д. Задать уступку
- Лекция 22
- Спольз-е нечетких мн-в в мкз
- Методы прогнозирования