logo
Анализ типового радиотехнического звена

2.5 Расчет основных параметров и зависимостей

При расчетах приняты следующие значения параметров :

,

,

,

(для упрощения расчетов),

,

.

При этом математические ожидания, дисперсии, времена корреляции и эффективные полосы процессов принимают следующие значения:

1. На выходе первого линейного фильтра:

,

,

,

;

2. На выходе нелинейного элемента:

,

,

,

;

3. На выходе второго линейного фильтра:

,

,

,

.

Графики основных зависимостей показаны ниже.

Рисунок 2.18 Зависимость спектральной плотности мощности отклика второго линейного фильтра от его полосы пропускания.

Рисунок 2.19 Зависимость корреляционной функции отклика второго линейного фильтра от его полосы пропускания.

Рисунок 2.20 Зависимость дисперсии отклика второго линейного фильтра от его полосы пропускания.

Рисунок 2.21 Зависимость времени корреляции отклика второго линейного фильтра от его полосы пропускания.

При расширении полосы пропускания второго линейного фильтра им выделяется большая часть спектра входного, поэтому спектр выходного процесса расширяется. Когда полоса фильтра становится равной полосе процесса, возрастание практически прекращается. По этим же соображениям происходит увеличение дисперсии и сужение корреляционной функции.

Рисунок 2.22 Зависимость дисперсии отклика второго линейного фильтра от полосы пропускания первого линейного фильтра.

Рисунок 2.23 Зависимость эффективной полосы отклика второго линейного фильтра от полосы пропускания первого линейного фильтра.

При расширении полосы пропускания первого фильтра полоса выходного процесса также расширяется вплоть до полосы пропускания второго фильтра, а затем не изменяется, что соответствует полученным зависимостям. На рисунке 2.23 при = наблюдается скачок, что обусловлено кратностью три одного из полюсов в выражении для спектра мощности отклика второго линейного фильтра. При этом изменяются выражения для характеристик случайного процесса.

3 Заключение

В результате проделанной работы произведен расчет прохождения смеси белого шума и высокочастотного узкополосного колебания через типовое радиотехническое звено на уровне корреляционных функций и спектральных плотностей мощности. Получены основные характеристики процессов на выходе каждого элемента звена, зависимости характеристик этих процессов от параметров звена.

Наибольшая помехоустойчивость, как следует из результатов работы, достигается при минимальной ширине полос пропускания избирательных элементов или, что одно и то же, максимальной добротности. При этом достигается максимальное подавление шумовой составляющей сначала в тракте высокой частоты, а затем, после нелинейного преобразования на детекторе, в тракте низкой частоты. Из полученных зависимостей (смотри графики) следует, что при стремлении полос ФВЧ и ФНЧ к нулю происходит уменьшение до нуля дисперсии и эффективной полосы процесса на выходе звена; время корреляции стремится к бесконечности.

Полученные результаты позволяют смоделировать прохождение полезного сигнала на фоне реальных шумов, имеющих место на практике, через типовые радиотехнические устройства. На основе полученных результатов возможно определить требуемое для заданной помехоустойчивости отношение сигнал-шум на входе радиотехнической системы, прогнозировать возможную реализацию и поведение откликов отдельных элементов этих устройств, что является актуальным вопросом в проектировании современных радиотехнических систем.

Приближения и допущения, принятые в работе, являются обычными и приемлемыми при расчете реальных радиотехнических устройств. Более точный анализ оказывается гораздо более трудоемким, а зачастую просто невозможным.

Список использованной литературы.

1. Бернгардт А.С. Основы статистической радиотехники. Методическое пособие. Томск, ТИАСУР - 1993.

2. Левин Б.Р. Теоретические основы статистической радиотехники. М., «Сов. Радио», 1974.