КРИПТОГРАФИЯ: ИСТОРИЯ И СОВРЕМЕННОСТЬ
Исторически криптография зародилась из потребности передачи секретной информации. Длительное время она была связана только с разработкой специальных методов преобразования информации с целью ее представления в форме недоступной для потенциального злоумышленника. С началом применения электронных способов передачи и обработки информации задачи криптографии начали расширяться.
В настоящее время, когда компьютерные технологии нашли массовое применение, проблематика криптографии включает многочисленные задачи, которые не связаны непосредственно с засекречиванием информации. Современные проблемы криптографии включают разработку систем электронной цифровой подписи и тайного электронного голосования, протоколов электронной жеребьевки и идентификации удаленных пользователей, методов защиты от навязывания ложных сообщений и т.п. Специфика криптографии состоит в том, что она направлена на разработку методов, обеспечивающих стойкость к любым действиям злоумышленника, в то время как на момент разработки криптосистемы невозможно предусмотреть все способы атаки, которые могут быть изобретены в будущем на основе новых достижений теории и технологического прогресса.
Криптоанализ - наука (и практика ее применения) о методах и способах вскрытия шифров. Криптография и криптоанализ составляют единую область знаний - криптологию, которая в настоящее время является областью современной математики, имеющий важные приложения в современных информационных технологиях.
Термин «криптография» ввел Д.Валлис. Потребность шифровать сообщения возникла очень давно. В V - VI вв. до н. э. греки применяли специальное шифрующее устройство. По описанию Плутарха, оно состояло из двух палок одинаковой длины и толщины. Одну оставляли себе, а другую отдавали отъезжающему. Эти палки называли скиталами. Когда правителям нужно было сообщить какую-нибудь важную тайну, они вырезали длинную и узкую, вроде ремня, полоску папируса, наматывали ее на свою скиталу, не оставляя на ней никакого промежутка, так чтобы вся поверхность палки была охвачена полосой. Затем, оставляя папирус на скитале в том виде, как он есть, писали на нем все, что нужно, а написав, снимали полосу и без палки отправляли адресату. Так как буквы на ней разбросаны в беспорядке, то прочитать написанное он мог, только взяв свою скиталу и намотав на нее без пропусков эту полосу.
Аристотелю принадлежит способ дешифрования этого шифра. Надо изготовить длинный конус и, начиная с основания, обертывать его лентой с шифрованным сообщением, сдвигая ее к вершине. В какой-то момент начнут просматриваться куски сообщения. Так можно определить диаметр скиталы.
В Древней Греции (II в. до н. э.) был известен шифр, называемый «квадрат Полибия». Это устройство представляло собой квадрат 55, столбцы и строки которого нумеровались от 1 до 5. В каждую клетка этого квадрата записывалась одна буква (в греческом алфавит одна клетка оставалась пустой, а в латинском в одну клетку записывалось две буквы: I, J).
1 |
2 |
3 |
4 |
5 |
||
1 |
A |
B |
C |
D |
E |
|
2 |
F |
G |
H |
I,J |
K |
|
3 |
L |
M |
N |
O |
P |
|
4 |
Q |
R |
S |
T |
U |
|
5 |
V |
W |
X |
Y |
Z |
В результате каждой букве отвечала пара чисел и шифрованное сообщение превращалось в последовательность пар чисел.
Например «Cogito, ergo sum» - «Я мыслю, следовательно, существую» (лат.) - Р.Декарт
13 |
34 |
22 |
24 |
44 |
34 |
15 |
42 |
22 |
34 |
43 |
45 |
32 |
|
C |
O |
G |
I |
T |
O |
E |
R |
G |
O |
S |
U |
M |
Шифр Цезаря
В I в до н. э. Гай Юлий Цезарь во время войны с галлами, переписываясь со своими друзьями в Риме, заменял в сообщении первую букву латинского алфавита (А) на четвертую (D), вторую (В) - на пятую (Е), наконец, последнюю - на третью:
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z |
|
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z |
A |
B |
C |
Сообщение об одержанной им победе выглядело так: YHQL YLGL YLFL «Veni, vidi, vici» - «Пришел, увидел, победил» (лат.) - Г.Ю.Цезарь
Император Август (I в. до н. э.) в своей переписке заменял первую букву на вторую, вторую - на третью и т.д., наконец, последнюю - на первую:
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z |
|
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z |
A |
Его любимое изречение было: GFTUJOB MFOUF «Festina lente» - «Торопись медленно» (лат.)
Квадрат Полибия, шифр Цезаря входят в класс шифров, называемых «подстановка» или «простая замена». Это такой шифр, в котором каждой букве алфавита соответствует буква, цифра, символ или какая-нибудь комбинация.
К классу «перестановка» относится шифр «маршрутная транспозиция» и его вариант «постолбцовая транспозиция». В каждом из них в прямоугольник [nm] сообщение вписывается заранее обусловленным способом, а столбцы нумеруются или обычным порядком следования, или в порядке следования букв ключа - буквенного ключевого слова. Так, ниже в первом прямоугольнике столбцы нумеруются в обычном порядке следования - слева направо, а во втором - в порядке следования букв слова «Петербург».
Используя расположение букв этого ключа в алфавите, получим набор чисел
[5 3 8 4 6 1 9 7 2]:
5 |
3 |
8 |
4 |
6 |
1 |
9 |
7 |
2 |
|
п |
р |
и |
л |
е |
п |
л |
я |
я |
|
с |
я |
п |
р |
е |
м |
у |
д |
р |
|
у |
м |
п |
р |
е |
м |
у |
д |
р |
|
б |
у |
д |
е |
ш |
ь |
а |
б |
в |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
п |
р |
и |
л |
е |
п |
л |
я |
я |
|
р |
д |
у |
м |
е |
р |
п |
я |
с |
|
у |
м |
п |
р |
е |
м |
у |
д |
р |
|
в |
б |
а |
ь |
ш |
е |
д |
у |
б |
В первом случае шифрованный текст найдем, если будем выписывать буквы очередного столбца в порядке следования столбцов (прямом или обратном), во втором, - если будем выписывать буквы столбца в порядке следования букв ключа. Таким образом будем иметь:
1. прувр дмбиу палмр ьеееш прмел пудяя дуясрб;
2. пммья ррвря мулрр епсуб еееешя ддбил пдлууа.
К классу «перестановка» принадлежит и шифр, называемый «решетка Кардано». Это прямоугольная карточка с отверстиями, чаще всего квадратная, которая при наложении на лист бумаги оставляет открытыми лишь некоторые его части. Число строк и столбцов в карточке четно. Карточка сделана так, что при ее последовательном использовании (поворачивании) каждая клетка лежащего под ней листа окажется занятой. Карточку сначала поворачивают вдоль вертикальной оси симметрии на 180є, а затем вдоль горизонтальной оси также на 180є. И вновь повторяют ту же процедуру:
Если решетка Кардано - квадрат, то возможен второй вариант самосовмещений фигуры, а именно, последовательные повороты вокруг центра квадрата на 90є.
Рассмотрим примеры:
Легко прочесть зашифрованное квадратной решеткой Кардано сообщение:
«вавочс муноти мыжрое ьухсой мдосто яаснтв» «В чужой монастырь со своим уставом не ходят»
Второе сообщение:
«ачшдеалб еымтяовн лыриелбм
оянгеаюш дтинрент еоеыпрни» «Да, были люди в наше время -
Не то, что нынешнее племя - богатыри» (М.Ю.Лермонтов)
также нетрудно расшифровать, пользуясь прямоугольной решеткой.
- § 41. Морфемика и дериватология: точки соприкосновения и размежевания
- Основы криптологии
- Периоды развития криптологии.
- Роль математики в гуманитарных науках. Языкознание и математика. Количественные методы в языкознании. Система и структура.
- Примерный перечень вопросов для анализа в сочинении/эссе на тему «я, языкознание и математика»
- Метод точек соприкосновения
- № 1. Языкознание и математика. Математическая лингвистика
- Тема 10. Введение в криптологию
- История развития криптологии