logo search
Криптология: точки соприкосновения математики и языкознания

КРИПТОГРАФИЯ: ИСТОРИЯ И СОВРЕМЕННОСТЬ

Исторически криптография зародилась из потребности передачи секретной информации. Длительное время она была связана только с разработкой специальных методов преобразования информации с целью ее представления в форме недоступной для потенциального злоумышленника. С началом применения электронных способов передачи и обработки информации задачи криптографии начали расширяться.

В настоящее время, когда компьютерные технологии нашли массовое применение, проблематика криптографии включает многочисленные задачи, которые не связаны непосредственно с засекречиванием информации. Современные проблемы криптографии включают разработку систем электронной цифровой подписи и тайного электронного голосования, протоколов электронной жеребьевки и идентификации удаленных пользователей, методов защиты от навязывания ложных сообщений и т.п. Специфика криптографии состоит в том, что она направлена на разработку методов, обеспечивающих стойкость к любым действиям злоумышленника, в то время как на момент разработки криптосистемы невозможно предусмотреть все способы атаки, которые могут быть изобретены в будущем на основе новых достижений теории и технологического прогресса.

Криптоанализ - наука (и практика ее применения) о методах и способах вскрытия шифров. Криптография и криптоанализ составляют единую область знаний - криптологию, которая в настоящее время является областью современной математики, имеющий важные приложения в современных информационных технологиях.

Термин «криптография» ввел Д.Валлис. Потребность шифровать сообщения возникла очень давно. В V - VI вв. до н. э. греки применяли специальное шифрующее устройство. По описанию Плутарха, оно состояло из двух палок одинаковой длины и толщины. Одну оставляли себе, а другую отдавали отъезжающему. Эти палки называли скиталами. Когда правителям нужно было сообщить какую-нибудь важную тайну, они вырезали длинную и узкую, вроде ремня, полоску папируса, наматывали ее на свою скиталу, не оставляя на ней никакого промежутка, так чтобы вся поверхность палки была охвачена полосой. Затем, оставляя папирус на скитале в том виде, как он есть, писали на нем все, что нужно, а написав, снимали полосу и без палки отправляли адресату. Так как буквы на ней разбросаны в беспорядке, то прочитать написанное он мог, только взяв свою скиталу и намотав на нее без пропусков эту полосу.

Аристотелю принадлежит способ дешифрования этого шифра. Надо изготовить длинный конус и, начиная с основания, обертывать его лентой с шифрованным сообщением, сдвигая ее к вершине. В какой-то момент начнут просматриваться куски сообщения. Так можно определить диаметр скиталы.

В Древней Греции (II в. до н. э.) был известен шифр, называемый «квадрат Полибия». Это устройство представляло собой квадрат 55, столбцы и строки которого нумеровались от 1 до 5. В каждую клетка этого квадрата записывалась одна буква (в греческом алфавит одна клетка оставалась пустой, а в латинском в одну клетку записывалось две буквы: I, J).

1

2

3

4

5

1

A

B

C

D

E

2

F

G

H

I,J

K

3

L

M

N

O

P

4

Q

R

S

T

U

5

V

W

X

Y

Z

В результате каждой букве отвечала пара чисел и шифрованное сообщение превращалось в последовательность пар чисел.

Например «Cogito, ergo sum» - «Я мыслю, следовательно, существую» (лат.) - Р.Декарт

13

34

22

24

44

34

15

42

22

34

43

45

32

C

O

G

I

T

O

E

R

G

O

S

U

M


Шифр Цезаря

В I в до н. э. Гай Юлий Цезарь во время войны с галлами, переписываясь со своими друзьями в Риме, заменял в сообщении первую букву латинского алфавита (А) на четвертую (D), вторую (В) - на пятую (Е), наконец, последнюю - на третью:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

Сообщение об одержанной им победе выглядело так: YHQL YLGL YLFL «Veni, vidi, vici» - «Пришел, увидел, победил» (лат.) - Г.Ю.Цезарь

Император Август (I в. до н. э.) в своей переписке заменял первую букву на вторую, вторую - на третью и т.д., наконец, последнюю - на первую:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

Его любимое изречение было: GFTUJOB MFOUF «Festina lente» - «Торопись медленно» (лат.)

Квадрат Полибия, шифр Цезаря входят в класс шифров, называемых «подстановка» или «простая замена». Это такой шифр, в котором каждой букве алфавита соответствует буква, цифра, символ или какая-нибудь комбинация.

К классу «перестановка» относится шифр «маршрутная транспозиция» и его вариант «постолбцовая транспозиция». В каждом из них в прямоугольник [nm] сообщение вписывается заранее обусловленным способом, а столбцы нумеруются или обычным порядком следования, или в порядке следования букв ключа - буквенного ключевого слова. Так, ниже в первом прямоугольнике столбцы нумеруются в обычном порядке следования - слева направо, а во втором - в порядке следования букв слова «Петербург».

Используя расположение букв этого ключа в алфавите, получим набор чисел
[5 3 8 4 6 1 9 7 2]:

5

3

8

4

6

1

9

7

2

п

р

и

л

е

п

л

я

я

с

я

п

р

е

м

у

д

р

у

м

п

р

е

м

у

д

р

б

у

д

е

ш

ь

а

б

в

1

2

3

4

5

6

7

8

9

п

р

и

л

е

п

л

я

я

р

д

у

м

е

р

п

я

с

у

м

п

р

е

м

у

д

р

в

б

а

ь

ш

е

д

у

б

В первом случае шифрованный текст найдем, если будем выписывать буквы очередного столбца в порядке следования столбцов (прямом или обратном), во втором, - если будем выписывать буквы столбца в порядке следования букв ключа. Таким образом будем иметь:

1. прувр дмбиу палмр ьеееш прмел пудяя дуясрб;

2. пммья ррвря мулрр епсуб еееешя ддбил пдлууа.

К классу «перестановка» принадлежит и шифр, называемый «решетка Кардано». Это прямоугольная карточка с отверстиями, чаще всего квадратная, которая при наложении на лист бумаги оставляет открытыми лишь некоторые его части. Число строк и столбцов в карточке четно. Карточка сделана так, что при ее последовательном использовании (поворачивании) каждая клетка лежащего под ней листа окажется занятой. Карточку сначала поворачивают вдоль вертикальной оси симметрии на 180є, а затем вдоль горизонтальной оси также на 180є. И вновь повторяют ту же процедуру:


Если решетка Кардано - квадрат, то возможен второй вариант самосовмещений фигуры, а именно, последовательные повороты вокруг центра квадрата на 90є.

Рассмотрим примеры:

Легко прочесть зашифрованное квадратной решеткой Кардано сообщение:

«вавочс муноти мыжрое ьухсой мдосто яаснтв» «В чужой монастырь со своим уставом не ходят»

Второе сообщение:

«ачшдеалб еымтяовн лыриелбм

оянгеаюш дтинрент еоеыпрни» «Да, были люди в наше время -

Не то, что нынешнее племя - богатыри» (М.Ю.Лермонтов)

также нетрудно расшифровать, пользуясь прямоугольной решеткой.